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Response of an electrodiffusion friction sensor to a finite step of the wall shear rate is stud
numerically solving the relevant mass-transfer problem. The resulting numerical data on tra
currents are treated further to provide reasonably accurate analytical representations. Exist
proximations to the general response operator are checked by using the obtained exact soluti
Key words: Unsteady mass transfer; Concentration boundary layer; Limiting diffusion current.

In the chemical engineering deslgnthere is no need for extremely accurate prec
tions of heat/mass-transfer rates. Commonly, an uncertainty willfi#% seems to be
quite acceptable. Such circumstances do not encourage a proper treatment of
mathematical problems. The history of the transient Leveque préblzan serve as &
typical example. The authdr$ who analytically solved this rather difficult transiel
problem in terms of the temperature field and the corresponding local wall fluxes
not try to convert their solution into the terms of the transient total fluxes, the
measurable quantityLater attempfs’are even worse in this respect, as they ignore
former exact analys&s.

Fortunately for the mathematics of diffusion, there are fields of pragmatic int
where a rigorous and accurate theoretical prediction of the mass-transfer rates is
appreciated. One of such fields is related to the scientific instrumentation bas
measuring the electrolytic currents under limiting diffusion conditions. With no sp¢
device, the current can be determined with an accuracy to 3—4 valid decimal
According to the Faraday law, the electrolytic current density is related stoichiometr
to the diffusion fluxes of the species taking part in the electrode rejafion e - R.
Typical applications of such electrolytic cells can be found both in electroanaly
chemistr§®and electrodiffusion (ED) flow measureméfits3

There are two important tasks for mathematics of unsteady convective diffusi
the field of ED flow measurements. First, properly evaluated transient experiment
vide a powerful tool for the calibration and checking of ED probes during flow m
urement®'2141% Second, the ED measurements taken under unsteady flow cond
should be corrected for the diffusion inertia of the ED probe. Until now, the only 1
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tered field of the ED inertia effects are harmonically fluctuating flows with a sr
amplitude of fluctuation$-131¢ Transient processes, e.g. response of the ED prot
a passing single particle or turbulent eddy, have not been studied yet at all. It
purpose of the present paper to analyse the simplest case of transient response
to a finite step of wall shear rate.

THEORETICAL

The essential part of the ED friction préb@?is a working electrode mounted flus
with an insulating wall. We consider the rectangular working electrode of a s
lengthx = L and larger widtlw, see Fig. 1. The electrode is surrounded by a streal
the electrolyte solution containing a depolarizer of a given bulk concenttion

c=c; forz=o . (1a)

The output signal of the ED probe is the electric curreni(t) but there are at leas
two operating parameters on the input of this electrochemical system: total over|
tial, U = U(t), and the wall shear ratg= q(t).

If both the ohmic and faradaic (kinetic) resistances are negligible in comparison
the transport resistance of the diffusion laydrjs equal to the concentration ove
potentiaf. The total overpotential then governs the wall concentrattosf the depo-
larizer according to the Nernst equafioBecause of a large number of side effes
which result in a varying activity of the solid electrode, however, there are only
states of the ED electrolytic cell which can be adjusted with a reasonable accura
equilibrium (no-current) stately = 0, with the surface concentration same as in

v, = q(x,0z

80x,8) = DE1J(x,

Y

> L

Rectangular (strip) electrodiffusion frictior
... probe
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!
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bulk, ¢ = c®, and thdimiting diffusion currentstate YF/RT| >> 1, with the zero sur-
face concentrationg” = 0. For a suitable redox couple (e.g. ferro- and ferricyanic
with the same bulk concentration of both forms, the limiting-current state is achiev
total overpotential of 0.# 1 V. The only reasonable transient potentiodynamic exp
ment with ED probes is the step change of overpotential from zero to a value
enough to achieve the limiting diffusion regime,

w2 fort<O

C(J[)_BO; fort>0 " @
The response of the ED probe under steady flow conditions to this potential step
subject of classical transient Lévéque probterat constant wall shear raggt) = g

In the present work, we study another transient problem, the response to a finit

change of the wall shear rates

; fort<O
- e «»

S 1

under limiting diffusion conditions;"(t) = 0, i.e.
c=0; forz=0 . (Lb)

The classical transient Leveque problem can be taken as a special case of thi
lem for an infinite initial wall shear rate), = «. Therefore, the transient probler
studied in the present paper is more general than the classical one and include:s
special case.

Under the conditions typical of ED experiméitthe general transport equation
convective diffusion for the concentration fietd= c(zt,x) of the depolarizer can be
simplified, by neglecting the spatial diffusi$n®®and curvature of the velocity profile
to the form

oc=Dad,c—qt)zo,c . 4

The primary response is the limiting diffusion current i(t) through the ED probe
which can be related to the mean diffusion flixof the depolarizer,

i/F =wxJt,X) =w J'ZJ(t,x’) ax ()
where
J(t,X) = D 0,6(zt,X)| =0 (6)

is the local diffusion flux. The ultimate aim of solving the transient problem is to dt
mine the mean diffusion flux] = J(t,x), according to Eqs5) and ).
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Singular Solution and the Convective-Diffusion Wave

There are two well-known simple solutions to the transport equatjowhich satisfy
the boundary conditionslé,b) and @) of the classical transient Leveque probiein
The Levequé! (steady) asymptote gives the steady-state solution for a constant
shear rate] = qg

C=C(N@¥) ., I=3(®, I=J® . (7ab,c)

The Cottrell’? (penetration) asymptote characterizes the response of an ED prc
a quiescent liquidg = 0, to the potentiostatic step from equilibrium to limiting diffusic
current regime, as described by E2): (

C=Cclzt) , I=J=J(1) . (8ab,c)

Notice that the function€, (n), J, (%), jL(x), related to the Leveque asymptote, a
Cc(Q), Jc(t), Jc(t), related to the Cottrell asymptote, are defined in the Symbols
Definitions. Using these two asymptotes, it is possible to set up a complete conti
and piecewise continuously differentiable solution to the classical transient Le\
problen?. The concentration field

C = MaxCq(z),C (zX); (9)

is split into two subdomains, separated by a moving boundary, the convective-diff
wave (CDW). Kinematics of the CDW can be determtimdsolving the equation

Cc(zt)=C.(zX) . (10

In particular, the CDW close to the wall,~ 0, separates the corresponding branche:
the local wall fluxes,

V2. for@<1

1; fore>1"
The constrain® = 1, i.e.xis proportionaltd®¥?3?q_ , characterizes the movement
the CDW close to the wall. The movement of the CDW in a deep hulk,o, i.e.
outside the concentration boundary layer> 1,n >> 1, can be determined by solvin
Eq. (10) in the corresponding approximation, exm{—= exp (£?). By recalling the de-
finition of 8, the constraing®= ¢?can be written in the form® = k which characterizes
the movement of the CDW outside the concentration boundary layer.

For a strip ED sensor of length= L, the transient mean flux calculated from Eff)(
according to definitiong) is given by:

X, (X) = éﬁ 1)

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



Generalized Transient Leveque Problem 1271

1

5, - -1/2 . - -

I/ (X) = %9 + 39 o forb6<1 .
E 1 ; for6>1

12

This approximation to the exact smooth soluti@iis commonly used in electrodiffu.
sion application¥"*5

Similarity Transformation

The original parabolic problem, see partial differential equat®ni¢ three-dimen-
sional, with two “parabolic” variables andt, and the “diffusion” coordinate. The

boundary conditions in the bulk of streaming solutian,.» « and at the electrode
surface,z = 0,

C=1; for(x<0) or (z - ») , (13ab)

C=0; for(x>0) and(z=0) , (139
are accompanied by the initial condition
C=C/(Rn) ; for(x>0) and(z>0) and(t<0) , (13d

which follows in an obvious way from condition8) (and the Leveque steady-sta
solution (7), applied tog(t) = R%q. The similarity transformation,

C=C.(n) + exp(—5n) HIO) | 19

whereH represents the transient deviation from the ultimate steady-state concen
field, reduces this 3D problem to a 2D one,

9
kOgH = 02H + (3 + nH (15)

with the corresponding initiaB(= 0), boundaryr{ = 0,n = ), and ultimate § = )
conditions:

R
H= eXp(%r]3) J’n exp(-sd) ds/l'%@ ; fore<0 , 16)

H=0; forn=0 orn=c orB=o0 . (17ab,c)
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The resulting local and mean diffusion fluxes are calculated from the concentt
field:

I/ (x) = M(8) = 8f :N(s)s-2 ds , (18)
where
N(6) =0,H(n,8)ly= - 19

For reasonable changes of the wall shear rateRsay 00, the response can be rep!
sented better in the form

L(6,R) = (M(®) - D/(R- 1) , 0)

which corresponds to a renormalized problem for the fi¢{é,n)/(R — 1). For very
small changes of the wall shear rd®e,» 1, the problem becomésindependent, with
a parameter-free initial condition,

H/(R-1) =1 exp(f;rﬁ)/F%E . for9<o0 . 1)

The governing partial differential equatiobbf displays a feature uncommon in col
vective diffusion problems: if the teréjH is always negative, the sign of the parabo

term, k dgH, changes across a critical lifg = %K in the domain ,n). We note that

this singular line corresponds to the CDW which we have observed as a feature |
of the singular solution. Now it becomes evident that the CDW is not merely an ar
of the singular approximation but an actual feature for the class of problems |
consideration. The only difference is that the exact solution will display this featu
a slightly smoother form: instead of a shock wave of zero thickness we could ex
thin transient region which separates two subdomains — inner zone of the tra
concentration boundary layer with convection and diffusion of comparable import
and the outer zone of the bulk solution where the concentration information fror
forward edge of the electrode is spread by convection with the local vetpeitit
should be noted that this transient substructure has nothing in common with the cl
steady concentration boundary layer, which is roughly bounded by the congitoB&
for8 <0 andn <3 forb - oo,

Numerical Solution

We intended to solve the parabolic boundary-value problem, Esjsafd (L6), and
(17ab,c), by the Crank—Nicolson method. Because of the CDW phenomenon, the
lem should be considered as a couple of two simultaneous parabolic transient pro
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for the innerK > 0) and outer(< 0) regions with the initial conditions placedir 0 and
0 = oo, respectively. The corresponding partial concentration fields must be ma
across the CDW lin& = 0. Preliminary numerical experiments have shown two us
facts:

a) Boundary values of the transient concentratié(g),0)|cpw, are very low in com-
parison with the maximum values ldfwithin the inner region.

b) The desired data about the local and mean fluxes are insensitive to the con
stated in the CDW lingk = 0.
In particular, we found two approximate solutions to the given problem which c
only with the inner transient regiam < ncpw(6). An additional boundary conditior
was stated at the CDW line. We tested two variants, using eitheetbeestimate

H=0; forn=ncpw(0) , (229

or the extrapolation

3 -
OH==-Gn-n"HH ; forn =ncow(®) - @2b)
The reason for the first variant is obvious, the second one is motivated by the asyr
form of the initial condition 21) for R -~ 1, H = n exp (—%rﬁ). The approximations

obtained in this way are compared in Fig. 2 with the final results obtained b
matching method. The following conclusions were drawn from this comparison:
a) The extrapolation, Eq2@b), gives a rough approximation with deviations abc
0.3% ofM(8) from the results of the matching method.
b) The zero estimate, Eqg2Zd), gives the resulting/1(6) which coincides with the
result of matching method within 0.001%, i.e. to 4-5 valid decimal digits.

Fic. 2

Effect of approximate estimates of the boundary _,
conditions in the CDW line on the accuracy 0?/
resulting transient currents for varioks The
trailing parts of the transient curves are linear ify=3
the chosen coordinates loty)(— 6°. Solid lines i
— exact courses (by the matching method),
dotted lines — zero estimate, EQ2§), dashed 54 L N _
lines — extrapolation, Eq22b) 005 0.8 1 0 1.2
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¢) By the matching methodl{(6) is calculated within the accuracy of 5 valid decinr
digits. This conclusion is supported by the comparison of numerical solutioRs>ferl
with the exact analytical solution fét = .

In the final computations, we have used the zero estin22® &s a first guess, ant
the final results were obtained by iteration where the forward computAfionp, over
the inner region alternates with the backward computafiéns O, over the outer re-
gion. The partial concentration fields were matched across the CDW line by sharit
neighbouring mesh points from the both subdomains, as shown in Fig. 3. The res
normalized concentration field(n,0) is shown in Fig. 4 for the cases of very high a
very low R value. The form of the concentration field obtained by numerical comp
tions suggests a weak singularity, with continuous field but infinitely large gradier
the CDW line.

By choosing a constant-step mesh for the discrete representation of tHe(fjgiyl

H,i = H(r]j,ei) N =jAn, 8'=iA6 , (23ab,c)

the partial differential equationl®) is converted to the difference equations for t
forward computations,

i o, Lo i i i
Hi=[(b-a-1)H™+ SH* Hii+H_ +HDl/[b+a+1] ; b>0, @49
with j = [1.n = 1], and for the backward computations,
i N i i i
H™=[(-b-a-)H/+ E(H}” +HG+H_ +HD)[-b+a+1] ; b<0 , 4b

0 f 2

0 inner region

n;

Niz

Fic. 3
- Crank—Nicolson (6-point cell) method with matct
ing between inner and outer region. In the inn
region, the calculation starts at the lihe 0 with
a known non-zero concentration profile, assumil
the mesh valuesH} in the outer region to be
CD-wave: known. In the outer region, the calculation star
on =2/3 x with the zero concentration profile fd@ = 6,
assuming the mesh valueﬁ in the inner region
L . to be known

outer region
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with j = [n.nL./ANn]. Here,
1 9 A
= anyan + S L o= - e | (25ab)
andj = n represents the local divide between the inner and outer subdomains,

Nn-1 <Ncow®) <N, - (26)

The system of linear difference equations, with the zero boundary conditiGn®
located at the edges = 0 andn = n,,., IS solved in an iterative way for the me:
vaIuesH} stabilized to 7 decimal digits.

The wall fluxes are calculated, assumhg kjn + k,n* forn - 0, from the formula

N' = N(6) = (16H} — Hb)/14An | @7

and then integrated according to the definitiaB) (for non-zero8-1 = 6' - A8, by the
modified trapezoidal rule,

J' N(9)s2ds=N1
el—l

01 _ 1, 60 ]
1 26 Mgl NI$| . e'D’ 29)

which reflects the singularity fa¥(6) = const at very lové.

Fc. 4
Normalized concentration profile${” = H(n,8)/H,, for R = 0.1 @) andR = 10 ). The profiles
are given for® ranging from 0 to 1.6 with constant st&p = 0.2. The dashed lines correspond to t
CDW line which separates inner and outer region
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RESULTS

Accuracy of Computations, Way of Presenting the Results

Strictly speaking, we got only an approximate numerical solution without a firm esti
of its accuracy. The extent of errors due to a finite-size discrete mesh was checl
modifying the step length80 andAn as well as the actually covered dom@in (0;6,,,,4,
n O (0Nma- We found that the ste@d® = 5 . 10° An = 1. 102 and the actual boun
daries of the unlimited domai®,.,= 4, Nmax= 3, guarantee the mean flux déda=
M(6) stable to 5 decimal digits. The forward/backward matching iterative proces:s
terminated after stabilizing the mean flux data to the same level of accuracy. Thel
we estimate the final accuracy of all the obtained data on the meanMux4(0) to
5 valid decimal digits.

For a giverR, the primary results are given by a set of discrete values of the fun
M = M(0) or L = L(8) over the intervab [ [0..0,,,] with the stepA6 = 1 . 102 These
discrete data were condensed, using non-linear least-squares fitting, to suitable ¢
cal formulas with accuracy better than 0.03%54alid decimal digits) of the curren
value of M. The computed mean transient fluxes for the full range of paraReter
shown in Fig. 5 for several values Rf

Classical Transient Leveque Problem, R oo

The classical transient Leveque problem differs from the generalized one (stated
former paragraphs) by a slightly different initial condition, see BY.which corre-

sponds to a step change of the wall shear rate from an infinitely large value to a
one,q,. The classical transient problem can be solved analytically to provide the

flux densitie4in the form of an infinite series

N(@) = 1+ 3ﬂ3r% al exp(—%ﬁﬁ) AISD) | 9
-1

T T

Fc. 5
Normalized mean transient currents for tt
10 10 10 ] 10" completeR-domain

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



Generalized Transient Leveque Problem 1277

where -a, < 0 stand for the zeroes of the Airy function, A(-= 0, and
9, = a,tDY3(3x/q) %3 = 3%3a,0/(4K) . (30

We do not know how to integrate the seri@8)(analytically. Within accuracy of 5
valid decimal digits, the result of numerical integration of the funcN@) was ex-
pressed by the semiempirical formula

(92 1%_ 3 g oy
M(8) = 0 e 1 . 31)
. 1+ %exp(—§63) ; fore>1

Noticeably, the maximum relative deviation of the exact reff} from the rather
trivial singular solution 12) does not exceed 0.53%.

Start-Up Flow Case, R. 0

The caseR = 0 is related to no-flow state prior to the start of the experiment).

There is no physically reasonable steady-state solution to the problem of two-dimer
diffusion in a quiescent solution (by analogy with the diffusion to a cylinder in
infinite volume). However, the corresponding transient problem for the initial conditio

H=- exp(%rﬁ) J’Z exp(-s3) dsﬂ'%g . fore=0, 32

seems to be a well-posed one, with a unique regular solution. Noticeably, the
boundary-value problem corresponds to another hypothetical physical situation,
the solution quite depleted of the active component,0, prior to the start,< 0, and
then replaced by the fresh solution in the half spac® just at the starting moment; 0.
In practice, this asymptotical problem is related to cases of very slow flow prior t
step changey, << g.. By treating the numerical data, we obtained the following empir
representation dfA(8),

1.405248 p<0.3

_ O
M(®) = %1 - exp(—46°%)(0.8948- 0.8618 + 0.253@%) ; 6>0.3 ° @3

Linear Approximation, R» 1

The linearization consists in solving the problem for very small changes of the
shear rates, i.e. f&® - 1. The problem of determinirig,(6) = L(6;R = 1) provides no
simplification of the general boundary-value problem under consideration. It
changes the initial conditiorl§) to the form 21) which contains no parameter. B
fitting the numerical results foR}- 1| < 102 we obtained the following representatio
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L@=" 1-4.0979 + 3.483B32 - 0.3830° ; 6<0.9
1) = Hoxp(-46%)(0.654- 1.027@ + 049287 ; 6> 0.9’

with the accuracy of 5 valid digits, or

_01-6/1.5°; 6/1.5<1
Ll(e)_é( 0 19/1.5>1" 39)

with the accuracy of 3—4 valid digits.

34

Retarded, R > 1.1, and Accelerated, R < 0.9, Flows

Retarded flows correspond to a step decrease of the wall shear rafe<i®,. and
accelerated flows to a step increase, Re> 1. The correlation of the numericall
simulated data oM = M(8;R) does not include the intervRIl( (0.9;1.1) which is fitted
within the frame of linear dynamics approximation, see B4y, (35). The following
correlations fit a function of two independent arguments. Rather rough approxime
were accepted, with accuracy to 3—4 valid decimal digits, for the sake of simplici
the empirical formulas. For retarded flovigs> 1.1:

© %R‘Z + %e)l’2 - (0.0028+ 1.048% )6 - (0.7628- 0.866R 1)0” + 0.2%°H"; 6 < 0.6
M =

.(36)
E 1+ exp [1.0938- 0.161R 1)6%)(0.06 R 2 - 0.0509(67* - 1.129979) ;6>0.6
For accelerated flowR < 0.9, withr =1 —R> 0:
gm (1.39041 - R%) + 0.083®R)6 — (1.377R - 1.123R + 2.48R)8: 6<0.3
M(8) =0 1- exp [(3.7+0.222 +0.2009)6%] 6503 " (37)
E 0.148+1.020 1 +[2.196 71+ 1.82972- 1.709p%2 ' '
DISCUSSION

The ED friction probes operating under limiting diffusion conditions can be unders
as a non-linear dynamic system with a single inputq(t) and a single output= i(t)
orJ =J(t), see Eqg.%). The dynamic calibration should result in a complete knowle
of the response operatar,

It =0 [ @38)

for any admissible history of the wall shear rates,q(t). In reality, representations o
this non-linear operator are known only for a very limited class of the flow historit
a) Linear approximatiotf~1?for superposed harmonic fluctuations gpfvith small
amplitude. Large-amplitude superposed harmonic fluctuations were also $tumjie
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numerical solving the partial differential equati@h). Unfortunately, these results wer
not represented in an analytic form, suitable for data treating and hence they &
discussed here.

b) Semiempirical??3and local-similarity* approximation for slow changes qf

It is the purpose of the remaining paragraphs to confront these two analytic:
proximations with the presented results.

Relation to Linear Dynamics for Small Fluctuations

To apply the well-known procedures of linear dynamics to a non-linear response
ator, some systematic approximation scheme must be introduced. Let us con:s
flow history in the form

q() - 95 =as (1) 39

assuming the relative amplitude of the fluctuaticlss Max{|e(t)|}, to be very small.
The response operator, neglecting the second-order effeet?, @an be linearized to
the form

io—i:iﬁ¢magdqg. (40)

Here,jsz jL(x) is the steady-state mean diffusion flux &ft) = g.. The kerneK(t) in
the Lebesgue convolution integral(f is the response of the linear system to a s
change of the input signal:

J(t) = I = JEK(D) 5 for ot) - o = AgYT) - 1)

Here,Y(t) stands for the Heaviside unit step function.
We have studied the linear response operator in a slightly different way, but it
easy task to prove the identity

K@z%u—HW@]. 42)

The limits of applicability of the linearized representation follow from the test sh
in Fig. 6. ForR— 1] < 0.1, i.e. fok, < 0.3, the deviations of the exact (non-lines
responses to the step changejifrom the linearized one are smaller than 10% of 1
actual value ofi(t) —35).

A simple approximate representationkit) follows from Eq. 85):
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5# 0 ; t<0

— (1 = t/t.)5) -

K(t):[B(l (1-thy)”); O<t<t ’ @3
. 1 ; , <t
S

with t; = 1.5t = 1.64&%309,2*D~3 The corresponding linearized response oper:
for a general small-amplitude flow history can now be written in the simple form

- = t _
00— 1=301-] (- el @4

The response to small-amplitude superposed harmonic fluctua(rsg, exp (wt), is
given byJ(t)/J, — 1 =g,K*(w) exp(iwt), where the complex impedank,

K* (w) = K(o0) + imJ':[K(s) — K(o0) exp(-iws) ds , 45

can be expressed from the approximatié8) (n the closed form:

1, P exofingad ot N
K =gt -pexpCinf stewipg =5 3 4y 0. @9
whereN = 5 and
p = wt; = 1.648x%%q;2°D13 | @7
1.2 \
R=12
L+
R=11
R=1.0
1
R=09
_ Fic. 6
k=08 Limits of the linearization for finite values of
0.8 ‘ . , (R — 1). The relative errors are expressed
0 0.25 05 075 ¢ 1 deviation ofL*(8) = L(8,R)/L(B) from unity
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The corresponding phase shift
@ = arctanmKYw)/ReK{w)) (48a)
and amplitude ratio
A = [KHw)/KH0)| (48b

are compared in Fig. 7 with the restitsf direct exact calculations.

Relation of the Slow-Motion Asymptote to Similarity Approximation

In ED practice, the most common approximation to the non-linear response oper
the quasi-steady asymptote,

30 =BLa() , B =D2U(2r (X) (49ab)

which tacitly assumes immediate response of the probe to any change of wall
rates. Assuming a similarity concentration profile in the concentration boundary |
the simple non-linear model 1?23

0
1.0

Fic. 7 05r
Various ways of calculating the convective-dif-
fusion impedance of the ED probe) (Phase
shift ® (in degrees); ) reduced amplitudeA.
Solid lines — exact valut$ dotted lines — glo-
bal similarity approximatiotf, dashed lines —
calculated from the linearized response funce.2 w
tion, Eq. ¢6) 0.5 1 2 5 10 o 20
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a0) = B0 + B ] Bo=2(e)Dim (502

follows directly from the integral form of the transport equatidn The coefficients
B, Bc are adjustable and can be determined from an appropriate dynamic calib
experiment. Their estimates by9p), (50b) are obtained assuming the Leveque &
Cottrell asymptotes of the classical Leveque transient process to be the calibrati
periments.

The linearized response to the small-amplitude superposed harmonic fluctuatio
cording to this model was studied recehtf The resulting representation of the in
pedance, given by the simple formula,

K*(w) = 1(3 + 2ity) , t, = Bo/(2B2R) = 0.48823%;23D13 (51ab)

is compared with the exact linear results in Fig. 7.

CONCLUSION

The non-linear dynamics of the ED friction probes was studied for the finite
change of wall shear rate, a new class of motions not studied till now.

The numerical results were represented by a set of empirical representations wif
accuracy (4-5 valid decimal digits) in a form suitable for further computer experim
The transient timé depends only on the new (steady) value of wall shearqatat
longer timest > t., the remaining perturbation fades out very quickly, proportiona
exp (—t/t)%), and is quite negligible. This indicates that ED probes display stro

fading memory.

The linearized response operator for a general class of unsteady motion with
fluctuations was approximated by a simple integral, B4d), @nd checked by compar
ing with the known solution for the harmonic superposed fluctuations.

SYMBOLS AND DEFINITIONS

c=c(zxt) concentration field of depolarizer
cP bulk concentration

[od wall concentration

C=cld normalized concentration

n
CL(n) EIo exp(-sd) ds/l'%é Leveque asymptote faE, Eq. (7a)

4
Cc(Q) EIo exp(-s? ds/l'%é Cottrell asymptote fo€, Eq. 8a)

D diffusivity of depolarizer
F = 96484.56 C mot Faraday constant
H = H(n,0) renormalized transient part 6f see Eq. 14)
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H} = H(nj,ei) discrete representation kbon constant-step mesh
i electric current

J(x,t) local diffusion flux at poink, Eq. @)
J(x,t) mean diffusion flux for electrode of lengkth Eq. &)
JL(X) = D@/(F%%r(x)) Leveque asymptote t) Eqg. (7b)
O
3|_(x) = gJL(x) Leveque asymptote tf Eq. (7¢)

Jet) = Jc(t) = D@/(F%E{(t)) Cottrell asymptote td, J, Egs 8b,c)
O

k(n,B) = (4k — 6n0O) variable coefficient at parabolic term, Eq5)
L(B,R) renormalized transient mean flux, EGOY

L1(8) =L(8,1) asymptote ol (6,R) for R -1, Eqgs 84), (35

M(8) = J(t,X)/I(X) normalized mean flux, Eql8)

N(B) = J(t,X)/I_(X) normalized local flux, Eq.10)

g =q(t) wall shear rate

Jo starting value ofy, Eq. @)

Js final (steady) value o, Eq. @)

R =8.31434 J K mot? gas constant

R= (qo/ag) V3

T thermodynamic temperature

t time

ts = 9Y3/4k)D~V3(x/q) 23 transient time for electrode of length
w electrode width, see Fig. 1

X distance to forward edge, see Fig. 1

X electrode lengtlx = L, see Fig. 1

z distance to surface, see Fig. 1

(=zh(t)

n =zlo(x)

Ncow(6) = gK/e CDW-line between inner and outer region of transient diffusion layer

6 =k1%02 = t/ts normalized time
K= r%ﬂr%@: 0.98493346
0 0

o(x) = (9Dx/g) V3
1(t) = (4Dt)V2
Q = wx?3p3gg23 normalized frequency of flow fluctuations

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Rep
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