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Response of an electrodiffusion friction sensor to a finite step of the wall shear rate is studied by
numerically solving the relevant mass-transfer problem. The resulting numerical data on transient
currents are treated further to provide reasonably accurate analytical representations. Existing ap-
proximations to the general response operator are checked by using the obtained exact solution.
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In the chemical engineering design1,2, there is no need for extremely accurate predic-
tions of heat/mass-transfer rates. Commonly, an uncertainty within ±10% seems to be
quite acceptable. Such circumstances do not encourage a proper treatment of related
mathematical problems. The history of the transient Leveque problem3,4 can serve as a
typical example. The authors3,4 who analytically solved this rather difficult transient
problem in terms of the temperature field and the corresponding local wall fluxes, did
not try to convert their solution into the terms of the transient total fluxes, the only
measurable quantity5. Later attempts6,7 are even worse in this respect, as they ignore the
former exact analyses3–5.

Fortunately for the mathematics of diffusion, there are fields of pragmatic interest
where a rigorous and accurate theoretical prediction of the mass-transfer rates is highly
appreciated. One of such fields is related to the scientific instrumentation based on
measuring the electrolytic currents under limiting diffusion conditions. With no special
device, the current can be determined with an accuracy to 3–4 valid decimal digits.
According to the Faraday law, the electrolytic current density is related stoichiometrically
to the diffusion fluxes of the species taking part in the electrode reaction8, O + e ↔R.
Typical applications of such electrolytic cells can be found both in electroanalytical
chemistry8,9 and electrodiffusion (ED) flow measurements10–13.

There are two important tasks for mathematics of unsteady convective diffusion in
the field of ED flow measurements. First, properly evaluated transient experiments pro-
vide a powerful tool for the calibration and checking of ED probes during flow meas-
urements5,12,14,15. Second, the ED measurements taken under unsteady flow conditions
should be corrected for the diffusion inertia of the ED probe. Until now, the only mas-
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tered field of the ED inertia effects are harmonically fluctuating flows with a small
amplitude of fluctuations10–13,16. Transient processes, e.g. response of the ED probe to
a passing single particle or turbulent eddy, have not been studied yet at all. It is the
purpose of the present paper to analyse the simplest case of transient response related
to a finite step of wall shear rate.

THEORETICAL

The essential part of the ED friction probe10–12 is a working electrode mounted flush
with an insulating wall. We consider the rectangular working electrode of a small
length x = L and larger width w, see Fig. 1. The electrode is surrounded by a stream of
the electrolyte solution containing a depolarizer of a given bulk concentration cb,

c = cb ;   for  z = ∞  . (1a)

The output signal of the ED probe is the electric current i = i(t) but there are at least
two operating parameters on the input of this electrochemical system: total overpoten-
tial, U = U(t), and the wall shear rate q = q(t).

If both the ohmic and faradaic (kinetic) resistances are negligible in comparison with
the transport resistance of the diffusion layer, U is equal to the concentration over-
potential8. The total overpotential then governs the wall concentration cw of the depo-
larizer according to the Nernst equation8. Because of a large number of side effects
which result in a varying activity of the solid electrode, however, there are only two
states of the ED electrolytic cell which can be adjusted with a reasonable accuracy: the
equilibrium (no-current) state, U = 0, with the surface concentration same as in the

w

vx = q(x,t)z

δ(x,t) = Dcb/J(x,t)

z

x

L

y
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FIG. 1
Rectangular (strip) electrodiffusion friction
probe
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bulk, cw = cb, and the limiting diffusion current state |UF/RT| >> 1, with the zero sur-
face concentration, cw = 0. For a suitable redox couple (e.g. ferro- and ferricyanides)
with the same bulk concentration of both forms, the limiting-current state is achieved at
total overpotential of 0.7 ÷ 1 V. The only reasonable transient potentiodynamic experi-
ment with ED probes is the step change of overpotential from zero to a value high
enough to achieve the limiting diffusion regime,

cw(t) = 



cb ;   for  t < 0
0;   for  t > 0

  . (2)

The response of the ED probe under steady flow conditions to this potential step is the
subject of classical transient Lévêque problem3–5 at constant wall shear rate q(t) = qs.

In the present work, we study another transient problem, the response to a finite step
change of the wall shear rates

q(t) = 




q0 ;   for  t < 0
qs ;   for  t > 0

  , (3)

under limiting diffusion conditions, cw(t) = 0, i.e.

c = 0 ;   for  z = 0  . (1b)

The classical transient Leveque problem can be taken as a special case of this prob-
lem for an infinite initial wall shear rate, q0 = ∞. Therefore, the transient problem
studied in the present paper is more general than the classical one and includes it as a
special case.

Under the conditions typical of ED experiments17, the general transport equation of
convective diffusion for the concentration field c = c(z,t,x) of the depolarizer can be
simplified, by neglecting the spatial diffusion18–20 and curvature of the velocity profile,
to the form

∂tc = D ∂zzc − q(t)z ∂xc  . (4)

The primary response is the limiting diffusion current i = i(t) through the ED probe
which can be related to the mean diffusion flux, J, of the depolarizer,

i/F = wxJ
_
(t,x) ≡ w ∫ J(t,x

0

x

′) dx′  , (5)

where

J(t,x) = D ∂zc(z,t,x)|z=0 (6)

is the local diffusion flux. The ultimate aim of solving the transient problem is to deter-
mine the mean diffusion flux, J = J(t,x), according to Eqs (5) and (6).
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Singular Solution and the Convective-Diffusion Wave

There are two well-known simple solutions to the transport equation (4) which satisfy
the boundary conditions (1a,b) and (2) of the classical transient Leveque problem3–5.
The Leveque21 (steady) asymptote gives the steady-state solution for a constant wall
shear rate q = qs:

C = CL(η(z,x))  ,     J = JL(x)  ,     J
_
 = J

_
L(x)  . (7a,b,c)

The Cottrell22 (penetration) asymptote characterizes the response of an ED probe in
a quiescent liquid, q = 0, to the potentiostatic step from equilibrium to limiting diffusion
current regime, as described by Eq. (2):

C = CC(ζ(z,t))  ,     J
_
 = J = JC(t)  . (8a,b,c)

Notice that the functions CL(η), JL(x), JL(x), related to the Leveque asymptote, and
CC(ζ), JC(t), JC(t), related to the Cottrell asymptote, are defined in the Symbols and
Definitions. Using these two asymptotes, it is possible to set up a complete continuous
and piecewise continuously differentiable solution to the classical transient Leveque
problem5. The concentration field

C = Max


CC(z,t),CL(z,x)




(9)

is split into two subdomains, separated by a moving boundary, the convective-diffusion
wave (CDW). Kinematics of the CDW can be determined5 by solving the equation

CC(z,t) = CL(z,x)  . (10)

In particular, the CDW close to the wall, z → 0, separates the corresponding branches of
the local wall fluxes,

J(t,x)/JL(x) = 



θ−1/2 ;   for  θ < 1

1 ;   for  θ > 1
  . (11)

The constraint θ = 1, i.e. x is proportional to D1/2t3/2qs , characterizes the movement of
the CDW close to the wall. The movement of the CDW in a deep bulk, z → ∞, i.e.
outside the concentration boundary layer, ζ >> 1, η >> 1, can be determined by solving
Eq. (10) in the corresponding approximation, exp (–η3) ≈ exp (–ζ2). By recalling the de-
finition of θ, the constraint η3 = ζ2 can be written in the form ηθ = κ which characterizes
the movement of the CDW outside the concentration boundary layer.

For a strip ED sensor of length x = L, the transient mean flux calculated from Eq. (11)
according to definition (5) is given by:
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J
_
(t,x)/J

_
L(x) = 








2
3

θ−1/2 + 
1
3

θ ;   for  θ < 1

1        ;   for  θ > 1
  . (12)

This approximation to the exact smooth solution3–5 is commonly used in electrodiffu-
sion applications14,15.

Similarity Transformation

The original parabolic problem, see partial differential equation (4), is three-dimen-
sional, with two “parabolic” variables x and t, and the “diffusion” coordinate z. The
boundary conditions in the bulk of streaming solution, z → ∞ and at the electrode
surface, z = 0,

C = 1  ;   for  (x < 0)  or  (z → ∞)  , (13a,b)

C = 0  ;   for  (x > 0)  and  (z = 0)  , (13c)

are accompanied by the initial condition

C = CL(Rη)  ;   for  (x > 0)  and  (z > 0)  and  (t ≤ 0)  , (13d)

which follows in an obvious way from conditions (3) and the Leveque steady-state
solution (7), applied to q(t) = R3qs. The similarity transformation,

C = CL(η) + exp (−1
2

η3) H(η,θ)  , (14)

where H represents the transient deviation from the ultimate steady-state concentration
field, reduces this 3D problem to a 2D one,

k ∂θH =  ∂2
ηηH + (3η + 

9
4

η4)H  , (15)

with the corresponding initial (θ = 0), boundary (η = 0, η = ∞), and ultimate (θ = ∞)
conditions:

H = exp (1
2

η3) ∫  
η

Rη
exp (−s3) ds/Γ



4
3




  ;   for  θ ≤ 0  , (16)

H = 0  ;   for  η = 0  or  η = ∞  or  θ = ∞  . (17a,b,c)
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The resulting local and mean diffusion fluxes are calculated from the concentration
field:

J
_
(t,x)/J

_
L(x) ≡ M(θ) = θ∫ N(s)s−2

θ

∞
 ds  , (18)

where

N(θ) ≡ ∂ηH(η,θ)|η=0  . (19)

For reasonable changes of the wall shear rate, say R < 100, the response can be repre-
sented better in the form

L(θ,R) = (M(θ) − 1)/(R − 1)  , (20)

which corresponds to a renormalized problem for the field H(θ,η)/(R – 1). For very
small changes of the wall shear rate, R → 1, the problem becomes R-independent, with
a parameter-free initial condition,

H(η)/(R − 1) = η exp (−1
2

η3)/Γ


4
3




  ;   for  θ ≤ 0  . (21)

The governing partial differential equation (15) displays a feature uncommon in con-
vective diffusion problems: if the term ∂θH is always negative, the sign of the parabolic

term, k ∂θH, changes across a critical line θη = 
4
6

κ in the domain (θ,η). We note that

this singular line corresponds to the CDW which we have observed as a feature typical
of the singular solution. Now it becomes evident that the CDW is not merely an artefact
of the singular approximation but an actual feature for the class of problems under
consideration. The only difference is that the exact solution will display this feature in
a slightly smoother form: instead of a shock wave of zero thickness we could expect a
thin transient region which separates two subdomains – inner zone of the transient
concentration boundary layer with convection and diffusion of comparable importance
and the outer zone of the bulk solution where the concentration information from the
forward edge of the electrode is spread by convection with the local velocity qsz. It
should be noted that this transient substructure has nothing in common with the classical
steady concentration boundary layer, which is roughly bounded by the conditions η < 3/R
for θ < 0 and η < 3 for θ → ∞.

Numerical Solution

We intended to solve the parabolic boundary-value problem, Eqs (15) and (16), and
(17a,b,c), by the Crank–Nicolson method. Because of the CDW phenomenon, the prob-
lem should be considered as a couple of two simultaneous parabolic transient problems,
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for the inner (k > 0) and outer (k < 0) regions with the initial conditions placed in θ = 0 and
θ = ∞, respectively. The corresponding partial concentration fields must be matched
across the CDW line, k = 0. Preliminary numerical experiments have shown two useful
facts:

a) Boundary values of the transient concentrations, H(η,θ)|CDW, are very low in com-
parison with the maximum values of H within the inner region.

b) The desired data about the local and mean fluxes are insensitive to the conditions
stated in the CDW line, k = 0.
In particular, we found two approximate solutions to the given problem which deals
only with the inner transient region η < ηCDW(θ). An additional boundary condition
was stated at the CDW line. We tested two variants, using either the zero estimate

H = 0  ;   for  η = ηCDW(θ)  , (22a)

or the extrapolation

∂ηH = −(3
2

η − η−1)H  ;   for  η = ηCDW(θ)  . (22b)

The reason for the first variant is obvious, the second one is motivated by the asymptotic

form of the initial condition (21) for R → 1, H ≈ η exp (–
1
2

η3). The approximations

obtained in this way are compared in Fig. 2 with the final results obtained by the
matching method. The following conclusions were drawn from this comparison:

a) The extrapolation, Eq. (22b), gives a rough approximation with deviations about
0.3% of M(θ) from the results of the matching method.

b) The zero estimate, Eq. (22a), gives the resulting M(θ) which coincides with the
result of matching method within 0.001%, i.e. to 4–5 valid decimal digits.

100

10–1

10–2

10–3

10–4

0  0.5           0.8                  1                             1.2θ

0.1

1

R = 10

L

FIG. 2
Effect of approximate estimates of the boundary
conditions in the CDW line on the accuracy of
resulting transient currents for various R. The
trailing parts of the transient curves are linear in
the chosen coordinates log (L) – θ3. Solid lines
– exact courses (by the matching method),
dotted lines – zero estimate, Eq. (22a), dashed
lines – extrapolation, Eq. (22b)
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c) By the matching method, M(θ) is calculated within the accuracy of 5 valid decimal
digits. This conclusion is supported by the comparison of numerical solutions for R >> 1
with the exact analytical solution for R = ∞.

In the final computations, we have used the zero estimate (22a) as a first guess, and
the final results were obtained by iteration where the forward computation, ∆θ > 0, over
the inner region alternates with the backward computation, ∆θ < 0, over the outer re-
gion. The partial concentration fields were matched across the CDW line by sharing the
neighbouring mesh points from the both subdomains, as shown in Fig. 3. The resulting
normalized concentration field H(η,θ) is shown in Fig. 4 for the cases of very high and
very low R value. The form of the concentration field obtained by numerical computa-
tions suggests a weak singularity, with continuous field but infinitely large gradients at
the CDW line.

By choosing a constant-step mesh for the discrete representation of the field H(η,θ),

Hj
i = H(ηj,θi) ;  ηj = j∆η ,  θi = i∆θ  , (23a,b,c)

the partial differential equation (15) is converted to the difference equations for the
forward computations,

Hj
i := [(b − a − 1)Hj

i−1 + 
1
2

(Hj+1
i  + Hj+1

i−1 + Hj−1
i  + Hj−1

i−1)]/[b + a + 1]  ;   b > 0  , (24a)

with j = [1..n – 1], and for the backward computations,

Hj
i−1 := [(−b − a − 1)Hj

i + 
1
2

(Hj+1
i  + Hj+1

i−1 + Hj−1
i  + Hj−1

i−1)]/[−b + a + 1]  ;   b < 0  , (24b)

CD-wave:
      θη = 2/3 κ

ηj–1       ηj          ηj+1

ηj–1       ηj          ηj+1

outer region

inner region

0                                              2
η

0

1

θ

FIG. 3
Crank–Nicolson (6-point cell) method with match-
ing between inner and outer region. In the inner
region, the calculation starts at the line θ = 0 with
a known non-zero concentration profile, assuming
the mesh values Hj

i in the outer region to be
known. In the outer region, the calculation starts
with the zero concentration profile for θ = θmax,
assuming the mesh values Hj

i in the inner region
to be known
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with j = [n..ηmax/∆η]. Here,

a = 
1
2

(∆η)2(3ηj + 
9
4

ηj
4)  ,   b = 

(∆η)2

∆θ  (4κ − 6ηjθi−1/2)  , (25a,b)

and j = n represents the local divide between the inner and outer subdomains,

ηn−1 < ηCDW(θ) ≤ ηn  . (26)

The system of linear difference equations, with the zero boundary conditions H = 0
located at the edges η = 0 and η = ηmax, is solved in an iterative way for the mesh
values Hj

i stabilized to 7 decimal digits.
The wall fluxes are calculated, assuming H ≈ k1η + k2η4 for η → 0, from the formula

Ni = N(θi) = (16H1
i  − H2

i )/14∆η  , (27)

and then integrated according to the definition (18) for non-zero θi−1 = θi − ∆θ, by the
modified trapezoidal rule,

∫ N(s)s−2

θi−1

θi

 ds = Ni−1 




1
θi−1 − 

1
∆θ ln 

θi

θi−1



 + Ni 





1
∆θ ln 

θi

θi−1 − 
1
θi




  , (28)

which reflects the singularity for N(θ) = const at very low θ.

0                              1                             2  0                              1                             2η η

b
θ = 0

θ = 1θ = 1

θ = 0
a

100

10–1

10–2

10–3

10–4

10–5

H+

FIG. 4
Normalized concentration profiles, H+ = H(η,θ)/Hmax, for R = 0.1 (a) and R = 10 (b). The profiles
are given for θ ranging from 0 to 1.6 with constant step ∆θ = 0.2. The dashed lines correspond to the
CDW line which separates inner and outer region
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RESULTS

Accuracy of Computations, Way of Presenting the Results

Strictly speaking, we got only an approximate numerical solution without a firm estimate
of its accuracy. The extent of errors due to a finite-size discrete mesh was checked by
modifying the step lengths ∆θ and ∆η as well as the actually covered domain θ ∈ (0;θmax),
η ∈ (0,ηmax). We found that the steps ∆θ = 5 . 10–5, ∆η = 1 . 10–2, and the actual boun-
daries of the unlimited domain, θmax = 4, ηmax = 3, guarantee the mean flux data M =
M(θ) stable to 5 decimal digits. The forward/backward matching iterative process was
terminated after stabilizing the mean flux data to the same level of accuracy. Therefore,
we estimate the final accuracy of all the obtained data on the mean fluxes M = M(θ) to
5 valid decimal digits.

For a given R, the primary results are given by a set of discrete values of the function
M = M(θ) or L = L(θ) over the interval θ ∈ [0..θmax] with the step ∆θ = 1 . 10–2. These
discrete data were condensed, using non-linear least-squares fitting, to suitable empiri-
cal formulas with accuracy better than 0.03% (4÷5 valid decimal digits) of the current
value of M. The computed mean transient fluxes for the full range of parameter R are
shown in Fig. 5 for several values of R.

Classical Transient Leveque Problem, R  → ∞

The classical transient Leveque problem differs from the generalized one (stated in the
former paragraphs) by a slightly different initial condition, see Eq. (2), which corre-
sponds to a step change of the wall shear rate from an infinitely large value to a finite
one, qs. The classical transient problem can be solved analytically to provide the local
flux densities4 in the form of an infinite series

N(θ) = 1 + 31/3Γ


1
3




∑an

−1

n=1

∞

 exp (−2
3

ϑn
3) Ai(ϑn

2)  , (29)

10–3                10–2                     10–1                      100
θ

R = 1

R = 0

R = ∞
20
10

 5

 2

 0.5

 0.2

 0.1

 0.05

101

 
 100

10–1

M

FIG. 5
Normalized mean transient currents for the
complete R-domain
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where –an < 0 stand for the zeroes of the Airy function, Ai(–an) = 0, and

ϑn = antD
1/3(3x/qs)−2/3 = 32/3anθ/(4κ)  . (30)

We do not know how to integrate the series (29) analytically. Within accuracy of 5
valid decimal digits, the result of numerical integration of the function N(θ) was ex-
pressed by the semiempirical formula5

M(θ) = 











(9
4

θ)−1/2 + 
102
300

θ − 
3

800
θ11 ;   for  θ < 1

1 + 
43
520

 exp (−10
3

θ3) ;   for  θ > 1
  . (31)

Noticeably, the maximum relative deviation of the exact result (31) from the rather
trivial singular solution (12) does not exceed 0.53%.

Start-Up Flow Case, R → 0

The case R = 0 is related to no-flow state prior to the start of the experiment, t = 0.
There is no physically reasonable steady-state solution to the problem of two-dimensional
diffusion in a quiescent solution (by analogy with the diffusion to a cylinder in an
infinite volume). However, the corresponding transient problem for the initial conditions

H = − exp (1
2

η3) ∫  
0

η
exp (−s3) ds/Γ



4
3




  ;   for  θ = 0  , (32)

seems to be a well-posed one, with a unique regular solution. Noticeably, the same
boundary-value problem corresponds to another hypothetical physical situation, with
the solution quite depleted of the active component, c = 0, prior to the start, t < 0, and
then replaced by the fresh solution in the half space x < 0 just at the starting moment, t = 0.
In practice, this asymptotical problem is related to cases of very slow flow prior to the
step change, q0 << qs. By treating the numerical data, we obtained the following empirical
representation of M(θ),

M(θ) = 




1.405245θ                        ;  θ < 0.3
1 − exp (−4θ3)(0.8948 − 0.8613θ + 0.2530θ2) ;  θ > 0.3

  . (33)

Linear Approximation, R → 1

The linearization consists in solving the problem for very small changes of the wall
shear rates, i.e. for R → 1. The problem of determining L1(θ) ≡ L(θ;R = 1) provides no
simplification of the general boundary-value problem under consideration. It only
changes the initial condition (16) to the form (21) which contains no parameter. By
fitting the numerical results for |R – 1| < 10–2, we obtained the following representation,
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L1(θ) = 




1 − 4.0979θ + 3.4832θ3/2 − 0.3830θ3    ;  θ < 0.9
exp (−4θ3)(0.654 − 1.0276θ + 0.4921θ2) ;  θ > 0.9

  , (34)

with the accuracy of 5 valid digits, or

L1(θ) = 



(1 − θ/1.5)5 ;  θ/1.5 < 1

0         ;  θ/1.5 > 1
  , (35)

with the accuracy of 3–4 valid digits.

Retarded, R > 1.1, and Accelerated, R < 0.9, Flows

Retarded flows correspond to a step decrease of the wall shear rate, i.e. R < 1, and
accelerated flows to a step increase, i.e. R > 1. The correlation of the numerically
simulated data on M = M(θ;R) does not include the interval R ∈ (0.9;1.1) which is fitted
within the frame of linear dynamics approximation, see Eqs (34), (35). The following
correlations fit a function of two independent arguments. Rather rough approximations
were accepted, with accuracy to 3–4 valid decimal digits, for the sake of simplicity of
the empirical formulas. For retarded flows, R > 1.1:

M(θ) = 












(R

−2 + 
9
4

θ)1/2 − (0.0028 + 1.0488R−2)θ − (0.7628 − 0.8662R−2)θ2 + 0.25θ3

−1 ; θ < 0.6

1 + exp [(1.0938 − 0.1615R−1)θ3](0.062R−2 − 0.0508)(θ−1 − 1.1297θ−2)      ; θ > 0.6

 .  (36)

For accelerated flows, R < 0.9, with r = 1 – R > 0:

M(θ) = 











R + (1.3904(1 − R2) + 0.0838R)θ − (1.3773R − 1.1233R2 + 2.487R3)θ2 ;  θ < 0.3

1 − 
exp [−(3.7 + 0.222r + 0.200r2)θ3]

0.148 + 1.020r−1 + [2.196r−1 + 1.829r−2 − 1.709]θ3/2
        ;  θ > 0.3

  . (37)

DISCUSSION

The ED friction probes operating under limiting diffusion conditions can be understood
as a non-linear dynamic system with a single input q = q(t) and a single output i = i(t)
or J = J(t), see Eq. (5). The dynamic calibration should result in a complete knowledge
of the response operator ℜ,

J
_
(t) = ℜ 


q(t)


  , (38)

for any admissible history of the wall shear rates, q = q(t). In reality, representations of
this non-linear operator are known only for a very limited class of the flow histories:

a) Linear approximation10–12 for superposed harmonic fluctuations of q with small
amplitude. Large-amplitude superposed harmonic fluctuations were also studied25 by
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numerical solving the partial differential equation (4). Unfortunately, these results were
not represented in an analytic form, suitable for data treating and hence they are not
discussed here.

b) Semiempirical5,12,23 and local-similarity24 approximation for slow changes of q.
It is the purpose of the remaining paragraphs to confront these two analytical ap-

proximations with the presented results.

Relation to Linear Dynamics for Small Fluctuations

To apply the well-known procedures of linear dynamics to a non-linear response oper-
ator, some systematic approximation scheme must be introduced. Let us consider a
flow history in the form

q(t) − qs = qs ε(t)  , (39)

assuming the relative amplitude of the fluctuations, ε0 ≡ Max{|ε(t)|}, to be very small.
The response operator, neglecting the second-order effects, O(ε0)

2, can be linearized to
the form

J
_
(t) − J

_
s = J

_
s ∫ K(t

−∞

t

 − s) dε(s)  . (40)

Here, Js = JL(x) is the steady-state mean diffusion flux for q(t) = qs. The kernel K(t) in
the Lebesgue convolution integral (40) is the response of the linear system to a step
change of the input signal:

J
_
(t) − J

_
s = J

_
sε0K(t)  ;   for  q(t) − qs = qsε0ϒ(t)  . (41)

Here, ϒ(t) stands for the Heaviside unit step function.
We have studied the linear response operator in a slightly different way, but it is an

easy task to prove the identity

K(t) = 
1
3
[1 − L1(t/ts)]  . (42)

The limits of applicability of the linearized representation follow from the test shown
in Fig. 6. For |R – 1| < 0.1, i.e. for ε0 < 0.3, the deviations of the exact (non-linear)
responses to the step change in q from the linearized one are smaller than 10% of the
actual value of (J(t) – Js).

A simple approximate representation of K(t) follows from Eq. (35):
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K(t) = 













0           ;         t < 0
1
3

(1 − (1 − t/t1)5) ;  0 < t < t1

1
3
           ;        t1 < t

  , (43)

with t1 = 1.5 ts = 1.648x2/3qs
–2/3D–1/3. The corresponding linearized response operator

for a general small-amplitude flow history can now be written in the simple form

J
_
(t)/J

_
s − 1 = 

1
3

[1 − ∫  
t−t1

t

(1 − 
t − s
t1

)
5
 dε(s)]  . (44)

The response to small-amplitude superposed harmonic fluctuations, ε(t) = ε0 exp (iωt), is
given by J

_
(t)/J

_
s − 1 = ε0K* (ω) exp (iωt), where the complex impedance K*,

K* (ω) ≡ K(∞) + iω∫ [K(s)
0

∞
 − K(∞) exp (−iωs) ds  , (45)

can be expressed from the approximation (43) in the closed form:

K∗(ω) = 
1
3
[1 − ip exp (−ip)∫ sN

0

1

 exp (ips) ds] = 
1
3
 ∑ N!

(k + N)!
k=0

∞

(−ip)k  , (46)

where N = 5 and

p = ωt1 = 1.648ωx2/3qs
−2/3D−1/3  . (47)

0                  0.25                 0.5                 0.75                  1θ

R = 1.2

R = 1.1

R = 1.0

R = 0.9

R = 0.8

1.2

 
 1

0.8

L+

FIG. 6
Limits of the linearization for finite values of
(R – 1). The relative errors are expressed as
deviation of L+(θ) = L(θ,R)/L1(θ) from unity
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The corresponding phase shift

Φ = arctan (Im

K

∗(ω)

/Re


K

∗(ω)

) (48a)

and amplitude ratio

A = |K∗(ω)/K∗(0)| (48b)

are compared in Fig. 7 with the results13 of direct exact calculations.

Relation of the Slow-Motion Asymptote to Similarity Approximation

In ED practice, the most common approximation to the non-linear response operator is
the quasi-steady asymptote,

J
_
(t) = βLq1/3(t)  ,     βL = D2/3cb/(2Γ(4

3
)x1/3) (49a,b)

which tacitly assumes immediate response of the probe to any change of wall shear
rates. Assuming a similarity concentration profile in the concentration boundary layer,
the simple non-linear model5,7,12,23

0.5          1             2                  5           10            20

90

60

30

 0
1.0

0.5

0.2

Ω

Φ
a

A
b

FIG. 7
Various ways of calculating the convective-dif-
fusion impedance of the ED probe. (a) Phase
shift Φ (in degrees); (b) reduced amplitude, A.
Solid lines – exact values13, dotted lines – glo-
bal similarity approximation12, dashed lines –
calculated from the linearized response func-
tion, Eq. (46)
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q(t) = βL
−3J

_
3(t) + βC

dJ
_
(t)

dt
,     βC = 2(cb)2D/π (50a,b)

follows directly from the integral form of the transport equation (4). The coefficients
βL, βC are adjustable and can be determined from an appropriate dynamic calibration
experiment. Their estimates by (49b), (50b) are obtained assuming the Leveque and
Cottrell asymptotes of the classical Leveque transient process to be the calibration ex-
periments.

The linearized response to the small-amplitude superposed harmonic fluctuations ac-
cording to this model was studied recently7,12. The resulting representation of the im-
pedance, given by the simple formula,

K* (ω) = 1/(3 + 2iωt0) ,   t0 = βC/(2βL
2qs

2/3) = 0.488x2/3qs
−2/3D−1/3 (51a,b)

is compared with the exact linear results in Fig. 7.

CONCLUSION

The non-linear dynamics of the ED friction probes was studied for the finite step
change of wall shear rate, a new class of motions not studied till now.

The numerical results were represented by a set of empirical representations with high
accuracy (4–5 valid decimal digits) in a form suitable for further computer experiments.

The transient time ts depends only on the new (steady) value of wall shear rate, qs. At
longer times, t > ts, the remaining perturbation fades out very quickly, proportional to
exp (–(t/ts)

3), and is quite negligible. This indicates that ED probes display strongly
fading memory.

The linearized response operator for a general class of unsteady motion with small
fluctuations was approximated by a simple integral, Eq. (44), and checked by compar-
ing with the known solution for the harmonic superposed fluctuations.

SYMBOLS AND DEFINITIONS

c = c(z,x,t) concentration field of depolarizer
cb bulk concentration
cw wall concentration
C = c/cb normalized concentration

CL(η) ≡ ∫  
0

η
exp (−s3) ds/Γ



4
3





Leveque asymptote for C, Eq. (7a)

CC(ζ) ≡ ∫  
0

ζ
exp (−s2) ds/Γ



3
2





Cottrell asymptote for C, Eq. (8a)

D diffusivity of depolarizer
F = 96484.56 C mol–1 Faraday constant
H = H(η,θ) renormalized transient part of C, see Eq. (14)
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Hj
i = H(ηj,θi) discrete representation to H on constant-step mesh

i electric current
J(x,t) local diffusion flux at point x, Eq. (6)
J(x,t) mean diffusion flux for electrode of length x, Eq. (5)

JL(x) = Dcb/(Γ


4
3




σ(x)) Leveque asymptote to J, Eq. (7b)

J
_

L(x) = 
3
2
JL(x) Leveque asymptote to J, Eq. (7c)

J
_

C(t) = JC(t) = Dcb/(Γ


3
2




τ(t)) Cottrell asymptote to J, J, Eqs (8b,c)

k(η,θ) = (4κ − 6ηθ) variable coefficient at parabolic term, Eq. (15)
L(θ,R) renormalized transient mean flux, Eq. (20)
L1(θ) = L(θ,1) asymptote of L(θ,R) for R →1, Eqs (34), (35)
M(θ) = J

_
(t,x)/J

_
L(x) normalized mean flux, Eq. (18)

N(θ) = J(t,x)/JL(x) normalized local flux, Eq. (19)
q = q(t) wall shear rate
q0 starting value of q, Eq. (3)
qs final (steady) value of q, Eq. (3)
R = 8.31434 J K–1 mol–1 gas constant
R = (q0/qs)1/3

T thermodynamic temperature
t time
ts = 91/3/4κ)D−1/3(x/qs)2/3 transient time for electrode of length x
w electrode width, see Fig. 1
x distance to forward edge, see Fig. 1
x electrode length x = L, see Fig. 1
z distance to surface, see Fig. 1
ζ=z/τ(t)
η = z/σ(x)

ηCDW(θ) = 
3
2

κ/θ CDW-line between inner and outer region of transient diffusion layer

θ = κτ2/σ2 = t/ts normalized time

κ = Γ2


3
2




/Γ2



4
3




 = 0.98493346

σ(x) = (9Dx/qs)1/3

τ(t) = (4Dt)1/2

Ω = ωx2/3D−1/3qs
−2/3 normalized frequency of flow fluctuations
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